Filter by faculty:

Found 10 matching student topics

Displaying 1–10 of 10 results

Understanding the structure-property relationships in reduced graphene oxide hydrogels

Graphene consists of hybridised carbon atoms in a hexagonal two-dimensional (2D) lattice. This material has extraordinary mechanical, thermal and electrical properties. However, one problem in practical applications is the aggregation and restacking between neighbouring graphene layers.In contrast, a possible way to avoid this problem is by transforming 2D graphene sheets into graphene hydrogel (GH) consisting of a three dimensional (3D) porous structure. Recently, 3D GH has been widely investigated in energy storage and conversion, catalysis and sensors. Furthermore, its accessible …

Study level
PhD, Master of Philosophy
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Development composite electrode for next generation Li-ion batteries

Australia is rich in lithium battery materials and is poised to be the world leader in sustainable energy storage. The rapid growth in the automobile and energy sector created greater demand for high-performance Li-ion batteries with high energy density. Conventional Li-ion batteries utilise a graphite anode with a limited theoretical capacity. Therefore, we need to develop alternative electrode materials with high energy density and a longer lifespan.Silicon (Si) has received attention owing to its high specific capacity at ambient temperature. …

Study level
PhD, Master of Philosophy, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Advanced materials for perovskite solar cells

Solar cells using metal halides perovskite materials to absorb light is one of the most important scientific discoveries. These cells have the potential to provide cost-effective solar electricity in the future. In the last decades, perovskite solar cells (PSCs) demonstrated unprecedented progress towards this goal. This technology holds the world record for energy conversion efficiency and is comparable to commercial crystalline silicon, but at a much lower cost.Currently their instability and use of toxic lead are key issues that restrict …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Tailoring 2D materials via interface engineering

2D materials are crystalline materials with only a single layer thickness. The best known 2D materials is graphene, but it also encompasses a large family of materials , such as transition metal dichalcogenides (TMDCs).2D materials are set for breakthroughs in fundamental research and transformative technologies. They have few surface dangling bonds and unique atomic-level uniformity which make them very appealing for developing optical, electronic and energy applications.These materials also bring a new degree of freedom to combine highly distinct materials, …

Study level
Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Glassy 2D molecular materials

Modern semiconductor technologies are based on crystalline materials with well-defined physical and electronic structures.However, molecular materials, such as organic semiconductors, may present interesting opportunities through disordered structures.The focus of this project will be on conjugated 2D materials without long-range order: molecular glasses. Through control of the chemical composition, atomic bonding motifs, and lateral size, we will be able to modify the properties of these materials.Our focus will be on synthesising and studying these new materials to better understand the relationship …

Study level
PhD, Master of Philosophy
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

2D heterostructures for future electronics

The traditional approach to the miniaturisation of electronic devices is coming to a halt. Experts agree that the Moore’s law prediction of doubling the number of transistors per chip every two years will cease to be fulfilled in 2020, as the heat produced in small structures cannot be cooled down quickly enough.However, by reducing the size of the device, the quantum nature of atoms and solids can be turned into an asset. By exploiting the phenomena occurring at these scales, …

Study level
PhD, Master of Philosophy, Honours
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Advanced materials for supercapacitors

Energy storage devices, such as supercapacitors, play an increasingly important role in our daily life as a reliable energy supplier. Supercapacitors are a type of energy storage system that possess merits of rapid energy storage and release (high power density) with a cycling lifetime of ten thousand or more. Nevertheless the energy density of conventional electrochemical capacitor is quite low.This project aims to enhance the energy density of supercapacitor by designing and synthesising nanostructured materials using transition metals.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Bio-inspired design to create strong and toughness composites

A fundamental challenge when designing materials for mechanical use is to attain both strength and toughness in one body. Conventional metallic materials generally have relatively large plasticity due to having a massive population of microstructural defects and effective plastic deformation mechanism. This has been exploited for fabricating tolerant (toughness) materials for structural applications. However, these structural defects render the materials relatively low strength and a low load-bearing capability. In contrast, ceramics and intermetallic compounds have higher strengths, owing to their …

Study level
PhD, Master of Philosophy, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

‘race for the surface’: designing the next generation antimicrobial biomaterials

When a biomaterial is implanted into the body and bacteria get into the implantation site, both the bacteria and tissue cells actively seek to establish their colonization on the biomaterial surface. This process, called ‘the race for the surface’ by Anthony Gristina in 1987, is still a subject of intense investigation. It is generally accepted that a biomaterial’s success in integrating with the body depends on if tissue cells win or the bacteria win the race. However, evidence from the …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Accountancy
Research centre(s)

Biofabrication robotics and meta-material research

Biofabrication is the application of advanced manufacturing (AM) to medicine. Part of our research involves the design and construction of AM tools to aid in tissue engineering, 3D scanning, computational medicine and 3D printing solutions for several healthcare needs.

Study level
Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Page 1 of 1