QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 79 matching student topics

Displaying 1–12 of 79 results

Control of concentrating solar thermal power plants

Concentrating solar power (CSP) is a technology that utilises mirrors (heliostats) to focus the sun’s rays on a solar receiver. This provides heat for a power generation cycle, creating thermal energy.Control of the heat transfer fluid temperature in the solar receiver is crucial for the efficient use/storage of thermal energy and to minimise the degradation of the receiver. The aim of this project is to design controllers for the heat transfer fluid pumps and the heliostats using a previously developed model of the receiver's thermodynamics.

Study level
Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

UAV navigation in GPS denied environments

This PhD project aims to develop a framework for unmanned aerial vehicles (UAV), which optimally balances localisation, mapping and other objectives in order to solve sequential decision tasks under map and pose uncertainty. This project expects to generate new knowledge in UAV navigation using an innovative approach by combining simultaneous localisation and mapping algorithms with partially observable markov decision processes. The project’s expected outcomes will enable UAVs to solve multiple objectives under map and pose uncertainty in GPS-denied environments. This …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

A new physics informed machine learning framework for structural optimisation design of the biomedical devices

The machine learning based computer modelling and simulation for engineering and science is a new era. The optimisation analysis is widely used in the design of structures.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Designing future magnetic materials

Low-dimensional and atomically-thin magnets host a myriad of exotic magnetic states. As such, they are excellent candidates for memory and logic devices in future technologies.However, the atomic structures needed to realise these states are still not well understood.For this reason, theoretical investigations of the electronic and magnetic properties of these materials are crucial to engineer functional magnetic materials in the future.

Study level
Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

Cyber-security aspects of battery storage systems

Lithium-ion (Li-ion) batteries are a key energy storage component in various electrical and electronic systems such as mobile phones, electric vehicles and grid storage. A properly designed battery management system (BMS) is crucial to guarantee the safety, reliability, and optimal performance of the battery as well as to interconnect the battery systems with each other and external systems through communication channels. However, security threats of the Li-ion battery systems are often overlooked by BMS developers in the design phase. The …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics
Research centre(s)

Centre for Clean Energy Technologies and Practices

Development of a 3D Printed Nasal Model to Study Viral-Airway Interactions

As airway infections become pandemic worldwide, airway models to investigate pathogen infection mechanism and nasal drug delivery is now increasingly important. However, current airway models cannot mimic the triad coupling of human nasal anatomical geometries, aerosol flow and biological responses (e.g. infection and inflammation) from the nasal epithelium.Computational fluid dynamics (CFD) models are used for simulating pathological airflow patterns resulting from anatomical structural changes of the nasal cavities, but they cannot measure phenotypic or functional alterations in the nasal epithelium …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Development of a multiplexed gut micro-bioreactor for functional screening of gut microbiome

The human microbiome refers to the collection of micro-organisms that are living symbiotically in the human body (defined as the “microbiota”), their genetic material as well as the surrounding environmental habitat.It is now appreciated that the microbiome plays an important role in human health and diseases. Various disease states have been linked to dysregulation of the gut microbiota, including neurodegenerative, cardiovascular and metabolic diseases. The composition of the gut microbiome can also affect responses to therapies, most notably in cancer …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Microbiome Research

Synergic identification of prestress force, moving force and interfacial force for corroborative substructural modelling

We are looking for an appropriate PhD candidate working for a recently awarded ARC Discovery Project. The PhD candidate will work on the further improvement of the previously developed Synergic identification of prestress force [1] and moving force applying to continuous supported prestressed concrete bridges using regularisation techniques [2-7] and corroborative substructural modelling.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering

Increasing resilience of robotic systems through quickest change detection technology

Future robotics systems are likely to benefit from having an ability to self-diagnose self-failure or the presence of anomalous situations (so that they can switch to fallback or fail-safe modes). Example situations include subtle sensor or actuator failure and cyber security or physical intruder detection.Such low signal-to-noise anomaly detection or self-diagnose problems can be understood using powerful mathematical and statistical tools which QCR has a rich history of advancing through collaboration with industry partners and publication in premium international venues.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Automating drone traffic management systems

Unmanned Traffic Management (UTM) describes a set of systems, services and procedures that will be developed to manage drone (unmanned aircraft systems/unmanned aerial vehicle/remotely piloted aircraft) operations in and around our cities. From surveillance tasks and package delivery through to passenger transport, UTM will be essentially in ensuring safe and efficient use of our airspace. Essentially, UTM is a new air traffic control system for drones with high levels of automation and advanced decision making and control. This research aims …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Bacteria - mammalian cell interactions in implant-associated infections

The recent COVID-19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Anthony Gristina conceptualized in 1987 that bacteria compete with tissue cells …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Robust feature selection and correspondence for visual control of robots

Stable correspondence-free image-based visual servoing is a challenging and important problem.In classical image-based visual controllers, explicit feature correspondence (matching) to some desired arrangement (configuration) is required before a control input is obtained. Instead, this project will investigate variable feature correspondence and robust feature selection to simultaneously solve visual servoing problem, removing any feature tracking requirement or additional image processing.Also involving Prof Jason Ford.Example of recent past work

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Page 1 of 7

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.