QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 25 matching student topics

Displaying 13–24 of 25 results

Enhancing wellbeing of youth from culturally diverse and refugee backgrounds

Australia has a multicultural population, with approximately 30% of the population from diverse backgrounds. We will propose a program of research encompassing the development of assessment processes and also interventions, addressing the diverse needs of this population, Proposed research will build upon work already undertaken by the team in collaboration with Education Queensland including Milpera State School. Methodologies to date have been broadly based, including both quantitative and qualitative approaches. These have included the examination of psychometric properties of scales …

Study level
PhD, Master of Philosophy, Honours
School
School of Psychology and Counselling
Research centre(s)

Australian Centre for Philanthropy and Nonprofit Studies

Investigating genetic variants involved in Wilson disease and copper metabolism using genome editing

Wilson disease (WD) is a genetic disorder of copper metabolism. It can present with hepatic and neurological symptoms, due to copper accumulation in the liver and brain (1). WD is caused by compound heterozygosity or homozygosity for mutations in the copper transporting P-type ATPase gene ATP7B. Over 700 ATP7B genetic variants have been associated with WD. Estimates for WD population prevalence vary with 1 in 30,000 generally quoted. Early diagnosis and treatment are important for successful management of the disease. …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

Illuminating the microbial world using genome-based fluorescence microscopy

Our understanding of microbial diversity on earth has been fundamentally changed by metagenomic characterisation of natural ecosystems. Traditional approaches for visualising microbial communities are time-consuming and provide limited information about the identity of specific microorganisms.The proposed research aims to combine single cell genomics and super resolution microscopy for novel, high-throughput, genome-based techniques to visualise microorganisms, plasmids and viruses, with strain level specificity.The application of these highly scalable approaches will provide comprehensive and unprecedented insight into the fine-scale dynamics and evolution …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Application of fluorescence-activated cell sorting and confocal microscopy for the study of the microbial communities responsible for nutrient removal from domestic wastewater

The removal of nutrients like carbon, nitrogen and phosphorus from wastewater is critical to the prevention of eutrophication in receiving water systems and is carried out by complex microbial communities.Eutrophication can have devastating consequences on aquatic life and natural ecosystems, with toxic algal blooms also posing a risk to human health.Understanding the microbiology of phosphorus (P) removal from wastewater is considered essential to knowledge-based optimisation of enhanced biological P removal (EBPR) systems.Most of the species in these systems are novel …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Identification and functional characterisation of genetic modifiers of iron overload

Iron is an element essential for virtually all life forms; aberrant iron metabolism is linked to many diseases. These include cancers, neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, iron overload and iron deficiency disorders, iron-loading anaemias, and the anaemia associated with chronic disease. Central to proper iron regulation is the appropriate expression and activity of the liver-expressed regulatory peptide, hepcidin, and the iron exporter, ferroportin (FPN). Modulating the expression and activity of hepcidin and FPN, and their interaction is …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Understanding the role of TGF signalling intermediates in liver and iron-related disease

Transforming growth factor β (TGFβ) and its family members is involved in many phases of liver disease development and iron regulation. We have identified unexplored players in liver disease and iron-related disorders: TGF signalling intermediates. In this project, we build on our exciting findings to examine the molecular mechanisms involved in TGF signalling intermediates-mediated disease progression and their potential as targets for liver and iron-related disease.AimsThis project aims to:examine the expression of TGF signalling intermediates in the liverspecifically deplete TGF …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Microfluidic chip-based tumor-immune cancer models for biomarker discovery

In-vitro profiling of tumour-immune cell interactions in proximity can provide valuable insight into patient response to new combinatorial immunotherapies that are in the pipeline and currently being tested in clinical trials. These in-vitro models allow for a more controlled and isolated environment and provide a methodical approach for generating quantifiable data characterizing the interactions between target and effector cells. Traditionally executed in well-plates, tumour-immune models have been slowly moving towards a microfluidic chip-based approach for several reasons: better control over …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Development of a microfluidic sample processing integrated robot (micro SPIN-R)

Microfluidic devices are increasingly relied upon to address the complexity of in-vitro disease models that are intended to mimic and provide insight into in-vivo processes and reactions to novel therapies and in turn, can become powerful companion diagnostic devices essential for predicting and individual patient’s reaction to a particular treatment. However, as these microfluidic devices become more and more prominent and necessary for addressing the drug screening and disease modeling needs of the industry, we have observed a lack in …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

From LiDAR or drone imagery to structural geometries

LiDAR geo-spatial data (3D coordinates) are freely available from government websites such as "QSpatial data portal". Alternatively, the use of drones have also become popular in aerial surveys and imagery.The geospatial data from these sources include 3D coordinates of various built structure. The data can be downloaded (in case of LiDAR) or processed from images (in case of drone survey) to create actual 3D picture of building structures. This work is commonly done using rendering software. The use of this …

Study level
Honours
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering
Research centre(s)

Centre for the Environment

Semantic SLAM for robotic scene understanding, geometric-semantic representations for infrastructure monitoring and maintenance

Making a robot understand what it sees is one of the most fascinating goals in our current research. To this end, we develop novel methods for Semantic Mapping and Semantic SLAM by combining object detection with simultaneous localisation and mapping (SLAM) techniques.We work on novel approaches to SLAM that create semantically meaningful maps by combining geometric and semantic information. Such semantically enriched maps will help robots understand our complex world and will ultimately increase the range and sophistication of interactions …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

The role of complex singularities in geometric flows

A popular topic in differential geometry involves studying the singularity structure of geometric flows. The most well-known example is mean curvature flow. In this example, surfaces evolve according to a flow rule that relates the speed of the surface to its curvature. Certain surfaces will evolve until singularities occur in finite time, and these singularities can be studied using similarity solutions and asymptotic analysis.In this project, a different perspective is applied to these problems, namely the use of complex variable …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Mean exit time calculations in complicated geometries

Calculating the duration of time required for a diffusive process to end is a classical problem in mathematics, engineering, biology and economics. The concept of mean exit time is widely used to study transport phenomena in biology, such as calculating the duration of time required for a protein created in a cell nucleus to reach the cell membrane. While many exact calculations of mean exit time are known for simple geometries and homogeneous media, exact solutions are rare for complicated …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Page 2 of 3

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.