Filter by faculty:

Found 8 matching student topics

Displaying 1–8 of 8 results

Bacteria - mammalian cell interactions in implant-associated infections

The recent COVID-19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Anthony Gristina conceptualized in 1987 that bacteria compete with tissue cells …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Race for the surface: helping implants to win the race

The recent COVID-19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them.Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.When a biomaterial is implanted into the body and bacteria get into …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Understanding and manipulating bacterial motility for infection control (PhD)

The recent COVID 19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Bacterial motility/movement and group-coordination on surfaces and in 3-dimensional environment …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Understanding and manipulating bacterial motility for infection control

The recent COVID 19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Bacterial motility/movement and group-coordination on surfaces and in 3-dimensional environment …

Study level
Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Improving human health through the microbiome

Every person harbours a unique collection of microorganisms - the majority of which reside in the gastrointestinal tract - that influences nearly every aspect of human health. As such, the gut microbiome is emerging as a potential tool for the diagnosis and treatment of a wide range of diseases.However, microbiome studies yield vast amounts of data, and the complexity of the microbiome makes it difficult to decipher interactions between microorganisms, host cells and environmental factors.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Molecular mechanisms of bacterial proteins involved in host recognition and defense

Pathogenic bacteria employ a large repertoire of molecular weapons known as virulence factors to infect the host and cause disease. In particular, autotransporter proteins, the largest family of secreted virulence factors in Gram-negative bacteria, promote bacterial colonisation, biofilm formation and host cell invasion and/or damage (1). In response, host cells deploy various antimicrobial strategies, such as the mobilisation of copper at the site of infection, which induces bacterial stress.Despite the abundance of autotransporters and their roles in infection, their mechanisms …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Metagenomic analysis of bacterial contamination screening pooled platelets

Bacterial sepsis is second only to ABO incompatibility as a cause of death from transfusion. Bacterial contamination of platelets is recognised as the most significant residual infectious risk of transfusion in developed countries. Bacterial Contamination Screening (BCS) has been required for testing of pooled and apheresis platelets manufactured by the Blood Service since April 2008. International microbiological culture studies suggest that the incidence of bacterial contamination ranges from 1:3000 to 1:1000 units of apheresis platelets and 1 in 600 to …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

A preclinical evaluation pipeline for new antivirulence drugs targeting multidrug resistant bacterial pathogens

A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the 21st century.’ - WHO, 2014 (1). Antimicrobial resistance (AMR) is a global public health priority. If no action is taken, AMR is predicted to kill more people than cancer and diabetes combined by 2050, with 10 million deaths estimated each year and a global cost of up to 100 trillion USD. New therapies to tackle multidrug …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Page 1 of 1