QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 102 matching student topics

Displaying 25–36 of 102 results

Development of a microfluidic sample processing integrated robot (micro SPIN-R)

Microfluidic devices are increasingly relied upon to address the complexity of in-vitro disease models that are intended to mimic and provide insight into in-vivo processes and reactions to novel therapies and in turn, can become powerful companion diagnostic devices essential for predicting and individual patient’s reaction to a particular treatment. However, as these microfluidic devices become more and more prominent and necessary for addressing the drug screening and disease modeling needs of the industry, we have observed a lack in …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Microfluidic chip-based tumor-immune cancer models for biomarker discovery

In-vitro profiling of tumour-immune cell interactions in proximity can provide valuable insight into patient response to new combinatorial immunotherapies that are in the pipeline and currently being tested in clinical trials. These in-vitro models allow for a more controlled and isolated environment and provide a methodical approach for generating quantifiable data characterizing the interactions between target and effector cells. Traditionally executed in well-plates, tumour-immune models have been slowly moving towards a microfluidic chip-based approach for several reasons: better control over …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Development of a Microfluidic Gut-Brain Axis Chip

The gut microbiome refers to the collection of micro-organisms that are living symbiotically in the human or animal gastrointestinal tract (defined as the “microbiota”), their genetic material as well as the surrounding environmental habitat. It is now appreciated that the microbiome plays an important role in human health and diseases. Many neurodegenerative diseases, such as Parkinson's Disease have been linked to dysregulation of the gut microbiota. However, it is difficult to study gut-brain axis using animal models due to inter-species …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Microbiome Research

Engineering the prostate tumour microenvironment in organ-on-a-chip systems

Prostate cancer remains one of the leading causes of global death. The tumour microenvironment (TME) including blood vessels, immune cells, fibroblasts, and the extracellular matrix (ECM) possesses disease-specific biophysical and biological factors that are difficult to recapitulate using conventional in vitro cell culture models.The absence of these factors, however, causes cells to display abnormal morphologies, polarisation, proliferation, and drug responses, thereby limiting the ability to translate research findings from traditional cell culture into clinical practice.Recent advances in organ-on-a-chip technology enable …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

An airway chip for screening viral infection mediated immune responses

Respiratory infections such as influenza, SARS-COV-2, , and MERS are increasingly prevalent. Complications and related deaths arising from these infections are often the result of a “cytokine storm”, whereby there is an over production of proinflammatory soluble factors by immune cells, which dictates symptoms severity and mortality risk [1]. Recent works showed that immunomodulatory therapy with or without antiviral agents may improve recovery outcome. However, the screening of suitable immune-modulatory and antiviral agents relies heavily on animal models which cannot …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

The role of genetics in the development and mechanism of human traits

The Statistical and Genomic Epidemiology Laboratory (SGEL) studies the role of genetics in the development and mechanism of human traits, with particular emphasis on migraine, and the specific goal of identifying genetic risk factors and detecting common genetic links with other disorders, in particular depression, endometriosis, and epilepsy.

Study level
PhD, Master of Philosophy
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

Characterisation of a novel protein co-amplified with the n-MYC oncogene

The MYCN oncogene is amplified in a number of tumour types, including Neuroblastoma (NB) and Neuroendocrine Prostate Cancer (NEPC), where it is associated with worse patient prognosis, as compared to non-amplified tumours. However, the high expression of MYCN (encoding the n-MYC protein) alone in non-amplified tumours is associated with better patient prognosis and less aggressive disease. This suggests that other genes co-expressed in MYCN amplified tumours may be responsible for mediating the aggressive traits of n-MYC. Our team has identified …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

Using a natural β-carboline dimer compound to target metabolic vulnerabilities linked to glycolysis in prostate cancer

Prostate cancer is an androgen dependent cancer and treatments are aimed at preventing activation of the androgen receptor. Part of the development of resistance to therapies involves prostate cancers reprogramming their metabolism to overcome metabolic stress induced by these therapies and support growth and survival. This reprogramming involves increases in the rate of glycolysis and intermediate pathways branching from glycolysis. Previously in our laboratory, the natural compound, beta-carboline dimer, BD, was identified to have potent effects on cell viability, cell …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

A preclinical evaluation pipeline for new antivirulence drugs targeting multidrug resistant bacterial pathogens

A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the 21st century.’ - WHO, 2014 (1). Antimicrobial resistance (AMR) is a global public health priority. If no action is taken, AMR is predicted to kill more people than cancer and diabetes combined by 2050, with 10 million deaths estimated each year and a global cost of up to 100 trillion USD. New therapies to tackle multidrug …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Characterisation of emerging multidrug resistant E. coli pathogens

The last fifteen years have witnessed an unprecedented rise in the rates of antimicrobial resistance among Gram-negative bacteria, described by the World Health organisation as a global health crisis (1). Escherichia coli sequence type 131 (E. coli ST131) is a ‘high-risk’ group of Gram-negative pathogens that have emerged rapidly and spread worldwide in the period of the last 10 years (2). E. coli ST131 strains are typically resistant to multiple classes of antibiotics and cause bloodstream and urinary tract infections …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Identifying protein and metabolite markers of burn injury and trauma

It can be difficult for clinical teams to determine the severity of burn injuries when the patient first presents to the hospital. This is because burn wounds continue to deepen/progress over time, in a process known as burn wound conversion. Some wounds may deepen over days or weeks and require aggressive surgical treatment e.g. grafting, and some wounds don’t progress, stay superficial in depth, and they can be managed conservatively with the application of different bandages or dressings. We have …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Identifying emergent ecosystem responses through genes-to-ecosystems integration at Stordalen Mire

Permafrost thaw induced by climate change is predicted to make up to 174 Pg of near-surface carbon (less than 3m below the surface) available for microbial degradation by 2100. Despite having major implications for human health, prediction of the magnitude of carbon loss as carbon dioxide (CO2) or methane (CH4) is hampered by our limited knowledge of microbial metabolism of organic matter in these environments.Genome-centric meta-omic analysis of microbial communities provides the necessary information to examine how specific lineages transform …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Page 3 of 9

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.