QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 10 matching student topics

Displaying 1–10 of 10 results

Application of fluorescence-activated cell sorting and confocal microscopy for the study of the microbial communities responsible for nutrient removal from domestic wastewater

The removal of nutrients like carbon, nitrogen and phosphorus from wastewater is critical to the prevention of eutrophication in receiving water systems and is carried out by complex microbial communities.Eutrophication can have devastating consequences on aquatic life and natural ecosystems, with toxic algal blooms also posing a risk to human health.Understanding the microbiology of phosphorus (P) removal from wastewater is considered essential to knowledge-based optimisation of enhanced biological P removal (EBPR) systems.Most of the species in these systems are novel …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Comprehensive strain-level characterisation of microbial communities associated with inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder driven by complex interactions between environmental, microbial and immune-mediated factors 1,2. An unfavourable shift in gut microbiome composition, known as dysbiosis, is now considered a key feature of IBD 2-5, however it is unclear how specific microorganisms and their interactions with host cells contribute to disease onset and progression.Previous IBD studies have been largely limited to older sequencing methods with low phylogenetic and functional resolution. Furthermore, these studies have predominantly …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Strain-level characterisation and visualisation of microbial communities associated with inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder driven by complex interactions between environmental, microbial and immune-mediated factors. An unfavourable shift in gut microbiome composition, known as dysbiosis, is now considered a key feature of IBD, however it is unclear how specific microorganisms and their interactions with host cells contribute to disease onset and progression. Previous IBD studies have been largely limited to older sequencing methods with low resolution. Furthermore, these studies have predominantly focused on bacterial populations, …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Adaptive evolution of anaerobic methanotrophic (ANME) archaea mediating methane oxidation in freshwater environments (PhD)

The as-yet-uncultured archaeal lineage Methanoperedenaceae are anaerobic methanotrophs with a key role in mitigating the atmospheric release of methane in freshwater environments. The metabolic diversity of these microorganisms directly links methane with several key biochemical cycles and suggests a remarkable ability of these microorganisms to adapt to diverse environmental conditions.The overall aim of this PhD project will be to uncover the metabolic diversity of the Methanoperedenaceae and to understand the evolutionary mechanisms responsible for these adaptations.Methods and ResourcesThe project will …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Illuminating the microbial world using genome-based fluorescence microscopy

Our understanding of microbial diversity on earth has been fundamentally changed by metagenomic characterisation of natural ecosystems. Traditional approaches for visualising microbial communities are time-consuming and provide limited information about the identity of specific microorganisms.The proposed research aims to combine single cell genomics and super resolution microscopy for novel, high-throughput, genome-based techniques to visualise microorganisms, plasmids and viruses, with strain level specificity.The application of these highly scalable approaches will provide comprehensive and unprecedented insight into the fine-scale dynamics and evolution …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Understanding capsular polysaccharide diversity is key to next generation therapies for multi-drug resistant Acinetobacter baumannii infections

Bacteriophage therapy is an attractive innovative treatment for infections caused by extensively drug resistant Acinetobacter baumannii, for which there are few effective antibiotic treatments remaining.Capsular polysaccharide (CPS) is a primary receptor for lytic bacteriophage, thus knowledge of the chemical structures of CPS produced by the species underpins the identification of suitable phage for therapeutic cocktails.As many phage depolymerases cleave a specific CPS linkage formed by either a glycosyltransferase or polymerase enzyme, characterisation of these proteins are essential.However, these remain largely …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Immunology and Infection Control

Multi-microbial 3D printing for screening microbiome functions

The ability to 3D print bacteria has relevance to a wide range of applications, ranging from developing novel anti-microbial modalities to probiotics for promoting human health. Traditional culture techniques used in microbiology such as agar plates and suspension cultures have limited spatio-temporal control over the bacteria microenvironment as well as their interaction partners, in particular, mammalian host cells. This project aims to bridge this technological gap by combining 3D printing and microfluidics technologies to spatially control the localisation of multiple …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Health
School
School of Biomedical Sciences

A preclinical evaluation pipeline for new antivirulence drugs targeting multidrug resistant bacterial pathogens

A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the 21st century.’ - WHO, 2014 (1). Antimicrobial resistance (AMR) is a global public health priority. If no action is taken, AMR is predicted to kill more people than cancer and diabetes combined by 2050, with 10 million deaths estimated each year and a global cost of up to 100 trillion USD. New therapies to tackle multidrug …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Symbiosis in microbial ecosystems

Soil systems are fundamentally important to the health of our planet, but the complexity of soil microbial communities makes them particularly challenging to study. Soil systems are amongst the most diverse microbial ecosystems on Earth in terms of the number of microbial species (and strains) present within individual samples, and in the breadth of functions encoded. Beyond complexity measured by counting distinct community members, interactions between microbial species including symbiosis, parasitism or commensalism are widespread and yet barely studied.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

‘race for the surface’: designing the next generation antimicrobial biomaterials

When a biomaterial is implanted into the body and bacteria get into the implantation site, both the bacteria and tissue cells actively seek to establish their colonization on the biomaterial surface. This process, called ‘the race for the surface’ by Anthony Gristina in 1987, is still a subject of intense investigation. It is generally accepted that a biomaterial’s success in integrating with the body depends on if tissue cells win or the bacteria win the race. However, evidence from the …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Business and Law
School
School of Accountancy

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.