QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 37 matching student topics

Displaying 1–12 of 37 results

Capturing the impact of patient variability in a novel cancer treatment

In 2015, the Food and Drug Association (FDA) approved a lab-engineered virus for the treatment of melanoma (skin cancer). Since then, there has been a significant increase in the number of lab-grown viruses that are being tested in clinical trials as potential treatments of cancer. Unfortunately, it seems that a large number of patients in these clinical trials fail under this treatment and currently there is no way to distinguish between responders and non-responders to treatment.Fortunately, we can use mathematics …

Study level
Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Using mathematics to understand multiple sclerosis: what causes the immune system to attack the brain?

Every day, we use our bodies to move, think, talk and eat, but for people with multiple sclerosis (MS) these tasks can be virtually impossible. MS is a chronic disease which develops because the immune system has started to attack the nerve cells in the brain. This causes the degradation of parts of the brain and irreversible impairment in physical and mental activity. Unfortunately, this disease has no cure, and while considerable therapeutic advances against this disease have been achieved, …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Predicting alternative states induced by multiple interacting feedbacks: seagrass ecosystems as a case study

This project seeks to explore the complex dynamics that might arise from multiple interacting feedbacks in marine ecosystems, by designing ordinary and/or partial differential equation models of these feedbacks and analysing the steady states and/or temporal dynamics of the proposed model(s).It has been hypothesised that many social and ecological systems exhibit alternative stable states due to feedback processes that keep the ecosystem in one state or the other. The result can be tipping points, which are difficult to predict but …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Optimising delivery of a novel nose-to-brain treatment for brain cancer

Glioblastoma multiforme (GBM) is an aggressive brain cancer with no curative treatment and poor prognosis. One of the biggest challenges with treating GBM is the inability of treatment to cross the blood-brain barrier resulting in poor drug distribution in the brain. Fortunately, scientists have recently developed a novel nose-to-brain delivery system that uses nanoparticles loaded with a chemotherapy drug called paclitaxel. Initial treatment investigations in vivo are showing significant promise in reducing and controlling the tumour burden. While exciting, before …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Optimal ecosystem management in rapidly changing systems

Delays in acting in collapsing ecosystems can be catastrophic. With every passing year, the chances that the ecosystem has progressed past some point of no return increases. Yet the research and development needed to develop a new technology can take a long time. Balance between these two dynamic processes is needed to determine the optimal length and effort for developing new technologies. This project will develop a method for finding the optimal schedule for developing technological readiness, social acceptability, a …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Diffusion and first passage times in random media

Diffusion in homogenous environments is relatively well understood, but the problem becomes more complicated in complex environments - such as wood tissue, cells, filters and catalysts. At QUT there is extensive expertise in using advanced numerical methods to model diffusions and first passage times in complex environments.The ability to combine this expertise with realistic models of random media based on level-sets of Gaussian random field.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Mathematical modelling of ecosystem feedbacks and value-of-information theory

Ecosystems respond to gradual change in unexpected ways. Feedback processes between different parts of an environment can perpetuate ecosystem collapse, leading to potentially irreversible biodiversity loss. However, it is unclear if greater knowledge of feedbacks will ultimately change environmental decisions.The project aims to identify when feedbacks matter for environmental decisions, by generating new methods that predict the economic benefit of knowing more about feedbacks. Combining ecological modelling and value-of-information theory, the outcomes of these novel methods will provide significant and …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Mathematical modelling of spatial plant patterns in a sub-Antarctic island

Various spatial patterns naturally emerge in ecology.  These include stripes, spots, hexagons, and donuts, to name just a few. However, it can be puzzling to figure out how these patterns form.Systems of partial differential equation models can be used to simulate these patterns, and thereby provide ecologists with testable hypotheses for how these patterns formed.

Study level
Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

A mathematical model of disrupting cell-to-cell communication by bacteria

The emergence of resistance of bacteria to antibiotics presents a global healthcare challenge that intensifies the search for strategies to increase the effcacy of therapy. Several mechanisms are involved in resistance of bacteria against antibiotics such as mutations in genes, horizontal gene transfer, and biofilm formation. Bacteria can communicate with each other through production and response to local concentration of small molecules called autoinducers.This mechanism is called quorum sensing (QS).It has been suggested that QS can influence the resistance of …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Playing Tetris with Australian threatened species

Many of Australia's threatened species can only avoid extinction if we keep them on islands or behind fences, where foxes and cats can't kill them all. We call these places "safe havens".Some species can only exist in some safe havens. Maybe they need particular habitats, or particular temperatures, and these can't be found everywhere.Some pairs of species can't live together. Maybe one is a predator of another. Maybe they fight too much.So, we need to find a way to put …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)

Centre for the Environment

Mathematical and computational techniques for advection diffusion reaction models

Mathematical models of advection diffusion reaction processes are fundamental to many applied disciplines including physics, biology, ecology and medicine. This project will focus on developing mathematical and computational techniques for continuum (PDE) and/or stochastic (random walk) models of advection diffusion reaction.Potential project topics include:building new simplified models that are easier to implement, interpret and analyseextracting new mathematical insights into advection diffusion reaction processesproposing new methods for parameterising models from datadeveloping new numerical and/or analytical methods for solving PDE models.All project …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Conservation is a noisy business: modelling the effects of stochasticity on wildlife management decisions

To conserve species in disturbed natural environments, we need to use mathematical models to predict the consequences of different interventions. Unfortunately, these models are based on partial information of complex systems, and the systems themselves are subject to substantial observational and process noise.We often use ordinary differential equations to describe ecosystems, like the classic logistic growth model:dn/dt = r n (1 - n / k)However, these models are deterministic, and they assume we know the values of the key parameters …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Page 1 of 4

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.