Filter by faculty:

Found 6 matching student topics

Displaying 1–6 of 6 results

Two dimensional heterostructures on SiC for new electronics

The present electronic technology is approaching the limit to the smallest circuit element achievable, and the future electronic devices will depend critically on the development of novel approaches. Two dimensional materials seem to offer an exciting perspective, and the advent of graphene (a single layer of carbon atoms in a honeycomb structure) sparked a huge interest, but its application to electronics are limited by the absence of a band gap.A new perspective has been open by other 2D materials which …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Organic thin film transistors for sensors, bioelectronic interfaces and bionics

Organic electronic devices are flexible, light weight and stretchable, which makes them an ideal candidate for integrating and interfacing with soft tissues in biological systems. An attractive attribute of organic electronic devices is the solution processibility of constituent layers, since solution-processable devices have the potential to be printed into complex designs and shapes, leading to integrated devices with multiple functionalities.Particularly, organic thin film transistors (OTFTs) have the potential to offer low cost, easy to use and printable sensors for a …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Epitaxial growth of 2D heterostructures for two dimensional electronics

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

2D heterostructures for future electronics

The traditional approach to the miniaturisation of electronic devices is coming to a halt. Experts agree that the Moore’s law prediction of doubling the number of transistors per chip every two years will cease to be fulfilled in 2020, as the heat produced in small structures cannot be cooled down quickly enough.However, by reducing the size of the device, the quantum nature of atoms and solids can be turned into an asset. By exploiting the phenomena occurring at these scales, …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Growth and characterisation of epitaxial graphene for electronic and sensing applications

The extraordinary properties of graphene, a single sheet of carbon atoms (e.g. monodimensional structure, high conductivity, low-noise characteristics) are expected to be exploited in the next generation of electronic devices and gas sensors. These applications require a perfect control of the growth of graphene layers, and an optimum integration with the processes and materials used in the semiconductor industry.This project aims at studying the growth of graphene obtained by heating crystalline SiC at high temperature in Ar atrmosphere and ultra …

Study level
Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Surface engineering for nanoelectronic devices

Ga2O3 is an emerging wide-bandgap semiconducting material that has received enormous attention in recent years. This is due to its potential application in power devices, UV detectors and military applications that are unattainable by conventional semiconductors such as silicon.The operation and performance of these type of electronic devices rely critically on the surface quality and properties of the semiconducting materials. However, the surface atomic structures and electronic structures of Ga2O3 single crystals are not yet fully understood.The principal aim of …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Page 1 of 1