QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 643 matching student topics

Displaying 157–168 of 643 results

Separating nonlinear optical effects in optical limiters

Optical limiting uses a medium’s nonlinear response to allow light at low intensities to be transmitted, but restricts transmission at high intensities so as to safeguard sensitive detectors including the eye. A popular nonlinear process used in optical limiters is two photon absorption where two high intensity light photons are simultaneously absorbed thereby reducing the light transmission through the medium. Unfortunately, in gold nanoparticle optical limiters a second nonlinear process can arise – saturated absorption which leads to an increase …

Study level
Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Develop point-of-care microfluidic technologies for cardiovascular and cerebrovascular diseases

Excessive clotting (thrombosis) leads to the cardiovascular diseases such as heart attack and stroke, killing one Australian every 12 minutes. It has long been recognized that platelets play a central role in thrombosis and are unique in their ability to form stable adhesive interactions under conditions of rapid blood flow.We've recently discovered a new ‘biomechanical’ prothrombotic mechanism that highlights the remarkable platelet sensitivity to the shear stress gradients of blood flow disturbance. Importantly, we've found that current anti-thrombotic drugs, such …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Topics in computational Bayesian statistics

Bayesian statistics provide a framework for a statistical inference for quantifying the uncertainty of unknowns based on information pre and post data collection.This information is captured in the posterior distribution, which is a probability distribution over the space of unknowns given the observed data.The ability to make inferences based on the posterior essentially amounts to efficiently simulating from the posterior distribution, which can generally not be done perfectly in practice.This task of sampling may be challenging for various reasons:The posterior …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science

Image-based assessment of atherosclerotic plaque vulnerability: Towards a computational tool for early detection and prediction

Plaque characteristics and local haemodynamic/mechanical forces keep changing during plaque progression and rupture.Quantifying these changes and discovering the progression-stress correlation can improve our understanding of plaque progression/rupture. This will lead to a quantitative assessment tool for early detection of vulnerable plaques and prediction of possible ruptures.Our research project aims to combine medical imaging, computational modelling, phantom experiments and pathological analysis to investigate plaque progression and vulnerability to rupture in both animal models and patients with carotid stenosis.We will identify and …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Image-based computational model to predict intracranial aneurysm rupture

Intracranial aneurysms are bulging, weak areas of an artery that supply blood to the brain which are relatively common. While most aneurysms do not show symptoms, 1% spontaneously rupture which can be fatal or it can leave the survivor with permanent disabilities. This catastrophic outcome has motivated surgeons to operate on approximately 30% of aneurysms despite their rate of complications arising and cost of operation.The impact of aneurysm morphology on blood flow shear stress and rupture could educate surgical decision-making …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Programming polymers

Radical polymerisations play a key role in both commercial and fundamental research (45% of all world polymer production, 100 million tons per year). However, radical polymerisations still suffer from synthetic drawbacks like all-carbon polymer backbones, which largely prevent their (bio)degradability. We will develop a polymerisation technique that allows to incorporate function into polymers - from degradability to catalytic activity.

Study level
Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Low cost, long life metal-ion capacitors and supercapacitors for renewable energy storage

Australia boasts rich wind and solar energy resources. To avoid fluctuations placing severe burden on the power grids, a reliable and efficient battery storage is required.The present technology based on lithium-ion batteries suffers from high manufacturing cost, poor safety and short life-span.A new kind of storage devices, metal-ion capacitors (MICs), are expected to overcome the storage and the charging speed of the traditional batteries in the near future, opening new avenues for renewable energy resources. The basic structure of MICs …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Growth and characterisation of epitaxial graphene for electronic and sensing applications

The extraordinary properties of graphene, a single sheet of carbon atoms (e.g. monodimensional structure, high conductivity, low-noise characteristics) are expected to be exploited in the next generation of electronic devices and gas sensors. These applications require a perfect control of the growth of graphene layers, and an optimum integration with the processes and materials used in the semiconductor industry.This project aims at studying the growth of graphene obtained by heating crystalline SiC at high temperature in Ar atrmosphere and ultra …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Two dimensional heterostructures on SiC for new electronics

The present electronic technology is approaching the limit to the smallest circuit element achievable, and the future electronic devices will depend critically on the development of novel approaches. Two dimensional materials seem to offer an exciting perspective, and the advent of graphene (a single layer of carbon atoms in a honeycomb structure) sparked a huge interest, but its application to electronics are limited by the absence of a band gap.A new perspective has been open by other 2D materials which …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Life cycle assessments in the hospital space for waste reduction

Recovering, recycling, reuse and reducing waste in the health sector becomes more and more important as it will help hospitals to become more sustainable and to reduce their impact on greenhouse gas emissions. Life cycle assessments of materials, for examples plastic packaging, is an important tool to establish the best practice for recovery and recycling of these materials.

Study level
Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)

Centre for a Waste-Free World

Designing smart visual technologies with people with intellectual disability

This research is part of a Future Fellowship project funded by the Australian Research Council. You will join a team of researchers and research students in the school of computer science, with expertise in the disciplines of human computer interactions and data science.In broad terms, the project is seeking to understand how the meaning of images can be computed and used in the design of intelligent interfaces which can be used by and support people with intellectual disability.The visual interactions …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Computer Science

Using mathematics to understand multiple sclerosis: what causes the immune system to attack the brain?

Every day, we use our bodies to move, think, talk and eat, but for people with multiple sclerosis (MS) these tasks can be virtually impossible. MS is a chronic disease which develops because the immune system has started to attack the nerve cells in the brain. This causes the degradation of parts of the brain and irreversible impairment in physical and mental activity. Unfortunately, this disease has no cure, and while considerable therapeutic advances against this disease have been achieved, …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences

Page 14 of 54

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.