QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 23 matching student topics

Displaying 1–12 of 23 results

Modelling and managing uncertain Antarctic species networks

Antarctic ecosystems are complex, and data is limited since it is expensive to collect. Species interact in food webs which can be modelled as mathematical networks. The relationships between species are not always known, or we might know they interact but not how strongly. Noisy (or imperfect) data can be used to model these species interactions to give more certainty about how the ecosystem works as a whole – although the worse the data is, the less information it contributes. …

Study level
Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Ecological interactions in Antarctic ecosystems

Antarctic and sub-Antarctic terrestrial ecosystems are dominated by mosses, lichens, invertebrates and some vascular plants. Marine vertebrates (penguins, seals, seabirds) also play an important role in driving terrestrial processes. All these species are influenced by many environmental and biotic factors, including interactions between species. Determining the impacts of climatic and environmental change on Antarctic and sub-Antarctic biodiversity requires greater understanding of these interactions.Ecological data on species interactions and the drivers of these interactions are an essential part of Antarctic and …

Study level
PhD
Faculty
Faculty of Science
School
School of Biology and Environmental Science
Research centre(s)
Centre for Data Science
Centre for the Environment

Statistical methods for detecting Antarctic ecosystems from space

Satellite images are a frequent and free source of global data which can be used to effectively monitor the environment. We can see how the land is being used, how it’s being changed, what’s there – even where animals are in the landscape. Using these images is essential, particularly for regions where data is expensive to collect or difficult to physically access, like Antarctica. In Antarctica and the sub-Antarctic islands, satellite images can be an easy and quick way to …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Mathematical modelling of spatial plant patterns in a sub-Antarctic island

Various spatial patterns naturally emerge in ecology.  These include stripes, spots, hexagons, and donuts, to name just a few. However, it can be puzzling to figure out how these patterns form.Systems of partial differential equation models can be used to simulate these patterns, and thereby provide ecologists with testable hypotheses for how these patterns formed.

Study level
Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Application of fluorescence-activated cell sorting and confocal microscopy for the study of the microbial communities responsible for nutrient removal from domestic wastewater

The removal of nutrients like carbon, nitrogen and phosphorus from wastewater is critical to the prevention of eutrophication in receiving water systems and is carried out by complex microbial communities.Eutrophication can have devastating consequences on aquatic life and natural ecosystems, with toxic algal blooms also posing a risk to human health.Understanding the microbiology of phosphorus (P) removal from wastewater is considered essential to knowledge-based optimisation of enhanced biological P removal (EBPR) systems.Most of the species in these systems are novel …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Adaptive evolution of anaerobic methanotrophic (ANME) archaea mediating methane oxidation in freshwater environments (PhD)

The as-yet-uncultured archaeal lineage Methanoperedenaceae are anaerobic methanotrophs with a key role in mitigating the atmospheric release of methane in freshwater environments. The metabolic diversity of these microorganisms directly links methane with several key biochemical cycles and suggests a remarkable ability of these microorganisms to adapt to diverse environmental conditions.The overall aim of this PhD project will be to uncover the metabolic diversity of the Methanoperedenaceae and to understand the evolutionary mechanisms responsible for these adaptations.Methods and ResourcesThe project will …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Illuminating the microbial world using genome-based fluorescence microscopy

Our understanding of microbial diversity on earth has been fundamentally changed by metagenomic characterisation of natural ecosystems. Traditional approaches for visualising microbial communities are time-consuming and provide limited information about the identity of specific microorganisms.The proposed research aims to combine single cell genomics and super resolution microscopy for novel, high-throughput, genome-based techniques to visualise microorganisms, plasmids and viruses, with strain level specificity.The application of these highly scalable approaches will provide comprehensive and unprecedented insight into the fine-scale dynamics and evolution …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Strain-level characterisation and visualisation of microbial communities associated with inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder driven by complex interactions between environmental, microbial and immune-mediated factors. An unfavourable shift in gut microbiome composition, known as dysbiosis, is now considered a key feature of IBD, however it is unclear how specific microorganisms and their interactions with host cells contribute to disease onset and progression. Previous IBD studies have been largely limited to older sequencing methods with low resolution. Furthermore, these studies have predominantly focused on bacterial populations, …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Comprehensive strain-level characterisation of microbial communities associated with inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder driven by complex interactions between environmental, microbial and immune-mediated factors 1,2. An unfavourable shift in gut microbiome composition, known as dysbiosis, is now considered a key feature of IBD 2-5, however it is unclear how specific microorganisms and their interactions with host cells contribute to disease onset and progression.Previous IBD studies have been largely limited to older sequencing methods with low phylogenetic and functional resolution. Furthermore, these studies have predominantly …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Predicting alternative states induced by multiple interacting feedbacks: seagrass ecosystems as a case study

This project seeks to explore the complex dynamics that might arise from multiple interacting feedbacks in marine ecosystems, by designing ordinary and/or partial differential equation models of these feedbacks and analysing the steady states and/or temporal dynamics of the proposed model(s).It has been hypothesised that many social and ecological systems exhibit alternative stable states due to feedback processes that keep the ecosystem in one state or the other. The result can be tipping points, which are difficult to predict but …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Mathematical modelling of ecosystem feedbacks and value-of-information theory

Ecosystems respond to gradual change in unexpected ways. Feedback processes between different parts of an environment can perpetuate ecosystem collapse, leading to potentially irreversible biodiversity loss. However, it is unclear if greater knowledge of feedbacks will ultimately change environmental decisions.The project aims to identify when feedbacks matter for environmental decisions, by generating new methods that predict the economic benefit of knowing more about feedbacks. Combining ecological modelling and value-of-information theory, the outcomes of these novel methods will provide significant and …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Sentience and the law (plants and animals)

For centuries the law has operated under the assumption that plants and animals are inert and material objects without the ability to meaningfully determine their future or engage with other living or material things. Plants constantly communicate with each other through fungal (mycorrhizal) networks in the soil and have up to 20 senses as opposed to the five that human beings have. New ways of thinking about plants and animals raise important and deep possibilities for law reform. The supervisors …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Business and Law
School
School of Law

Page 1 of 2

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.