QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 7 matching student topics

Displaying 1–7 of 7 results

Characterisation of a novel protein co-amplified with the n-MYC oncogene

The MYCN oncogene is amplified in a number of tumour types, including Neuroblastoma (NB) and Neuroendocrine Prostate Cancer (NEPC), where it is associated with worse patient prognosis, as compared to non-amplified tumours. However, the high expression of MYCN (encoding the n-MYC protein) alone in non-amplified tumours is associated with better patient prognosis and less aggressive disease. This suggests that other genes co-expressed in MYCN amplified tumours may be responsible for mediating the aggressive traits of n-MYC. Our team has identified …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

A novel molecular targeted therapy for anaplastic prostate cancer

In advanced PCa, where the cancer has spread into the bone and other organs, the emergence of treatment resistance remains inevitable. For decades the primary form of treatment in advanced PCa has been to target the production and actions of male sex hormones, androgens, the primary developmental and survival factor of prostate tissue. While these therapies result in tumour regression and cancer control, this is temporary and treatment resistance occurs, referred to as castrate resistant prostate cancer (CRPC). In the …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Novel therapeutic strategies to treat advanced colorectal cancer

Colorectal cancer is a very common disease, with over 15,000 new cases diagnosed in Australia annually. Metastatic colorectal cancer describes advanced disease that has spread beyond the primary site. This is very aggressive and incurable in the vast majority of these patients. To improve outcomes for colorectal cancer, we are using cutting edge genomic and cell biology techniques to understand disease heterogeneity and optimise drug response. We are developing novel therapeutic interventions based on unique molecular signatures and are testing …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Development of a microfluidic sample processing integrated robot (micro SPIN-R)

Microfluidic devices are increasingly relied upon to address the complexity of in-vitro disease models that are intended to mimic and provide insight into in-vivo processes and reactions to novel therapies and in turn, can become powerful companion diagnostic devices essential for predicting and individual patient’s reaction to a particular treatment. However, as these microfluidic devices become more and more prominent and necessary for addressing the drug screening and disease modeling needs of the industry, we have observed a lack in …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Investigating immunosuppression downstream of activated FGFR2 in endometrial cancer

FGFR2 encodes two alternatively spliced isoforms that differ in their ligand binding domain and the combination of tissue specific expression of these isoforms and tissue specific expression of the FGF ligands is the foundation of normal paracrine signalling. Isoform switching from FGFR2b (inclusion of exon 8) to FGFR2c (inclusion of exon 9) occurs in tumorigenesis as it establishes an autocrine loop in epithelial cancer cells. Our lab has reported that FGFR2 activation by mutations or isoform switching is associated with …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences

Engineering bioartificial extracellular tumour microenvironments for Osteosarcoma personalised precision oncology

Osteosarcoma (OS) is the most common malignant bone tumour affecting children and adolescents. Importantly, clinical outcomes have not improved for decades, and bone tumours remain to be a leading cause of cancer-related death in adolescents.By identifying ideal treatment approaches for each individual patient, precision oncology has the potential to significantly improve these outcomes. Yet, its widespread application is hindered by a lack of biomaterials that support the reproducible and robust generation of patient-derived osteosarcoma organoids in vitro.Therefore, this project will …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Developing a precision oncology workflow for Osteosarcoma treatment

Osteosarcoma (OS) is the most common malignant bone tumour that primarily affects children and adolescents. With approximately 400 diagnosed cases/year in Australia, OS has the lowest survival rate of all solid cancers and is the leading cause of cancer-related death in Queensland adolescents. Unfortunately, 3 in 4 patients will not survive longer than five years following diagnosis with metastatic OS. Clinical “one size fits all” treatment strategies results in highly variable and unacceptably poor patient responses. Shockingly, both the OS …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.