QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 6 matching student topics

Displaying 1–6 of 6 results

Forecasting disease spread risk based on human movement patterns

This project aims to forecast the risk of infectious disease spread, such as COVID-19 and dengue, based on human movement patterns. We'll use multiple data sources that describe people movement in order to understand individual and population level mobility patterns, and use empirical disease case data to model the effect of movement on the spread of disease.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Computer Science

Internet of Mobile Energy

The emergence of the two-way communication model and Distributed Energy Sources (DES) is transforming traditional power systems from largely centralised energy production to more decentralised and connected management systems. This is called the 'smart grid'.As the smart grid evolves, electric vehicles (EVs) are emerging as unconventional and highly-disruptive participants in the grid that can add significant benefit and flexibility. Notably, EVs are equipped with a relatively high capacity battery that stores energy to power the vehicle.EV batteries, coupled with the …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Computer Science

Designing micromobility for equitable and responsible use

Shared electric micromobility (e.g., e-bike, e-scooter) schemes are common in Australian cities, and all over the world. Despite their rapid growth in recent years, there are many challenges faced by operators and local jurisdictions. This includes Illegal and antisocial behaviours, inconveniences caused by vehicle placement, inequitable access, and narrow rider demographics (i.e., gendered activity with predominantly young male users).Electric micromobility is positioned as an important transport modality as urban populations expand and there is increasing strain placed on existing transport …

Study level
PhD
Faculty
Faculty of Creative Industries, Education and Social Justice
School
School of Design
Research centre(s)

Design Lab

The impact of automotive interior materials on user experience in the era of EVs

Materials play a crucial role in shaping people's perceptions, experiences, and emotional responses to the products they encounter. In automotive design, this significance is particularly pronounced within the interior cabin space, especially in the age of sustainability and electric vehicles (EVs).The materials utilised heavily influence how customers and users perceive the value, quality, and emotional aspects of their interactions. While numerous studies have examined the link between interior materials and traditional internal combustion engine (ICE) vehicles, the advent of EVs …

Study level
PhD
Faculty
Faculty of Creative Industries, Education and Social Justice
School
School of Design
Research centre(s)

Design Lab

Understanding and manipulating bacterial motility for infection control (PhD)

The recent COVID 19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Bacterial motility/movement and group-coordination on surfaces and in 3-dimensional environment …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Understanding and manipulating bacterial motility for infection control

The recent COVID 19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Bacterial motility/movement and group-coordination on surfaces and in 3-dimensional environment …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.