QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 9 matching student topics

Displaying 1–9 of 9 results

Characterisation of a novel protein co-amplified with the n-MYC oncogene

The MYCN oncogene is amplified in a number of tumour types, including Neuroblastoma (NB) and Neuroendocrine Prostate Cancer (NEPC), where it is associated with worse patient prognosis, as compared to non-amplified tumours. However, the high expression of MYCN (encoding the n-MYC protein) alone in non-amplified tumours is associated with better patient prognosis and less aggressive disease. This suggests that other genes co-expressed in MYCN amplified tumours may be responsible for mediating the aggressive traits of n-MYC. Our team has identified …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

Characterising drivers of melanoma cell heterogeneity

Tumour cell heterogeneity is linked to tumour progression through the generation of divergent cellular behaviours such as proliferation, survival, invasion and therapy resistance. Crucially, conventional and targeted therapies generally only target highly proliferative cells in tumours leading to initial tumour regression, however alternative sub-populations underpin the return of treatment refractory disease and facilitate metastatic spread. Our laboratory is focused on understanding the regulatory drivers of cellular plasticity in melanoma to better understand progression and metastatic spread of this disease and …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Determining the theapeutic efficiency of epigenetic drugs in ovarian cancer

Because cancer and many diseases arise from a combination of genetic propensity and the response of cells to external factors mediated through changes to the expression of key genes, it is important to understand epigenetic regulation. The epigenome is crucial to the changes of gene expression and there is now strong evidence that epigenetic alterations are key drivers of cancer progression. However, very few drugs targeting epigenetic modifiers have been successful, in part due to the lack of effective means …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Testing a promising targeted therapeutic for triple-negative breast cancer

Triple-negative breast cancers (TNBC) are negative for Estrogen Receptor, Progesterone Receptor and HER2 expression, are clinically aggressive and cannot be treated with the available hormonal or targeted drugs used for other breast cancer subtypes. TNBC accounts for 15-20% of all invasive breast cancer and patients have increased risk of recurrence, mortality and metastases early during disease progression. There is an urgent clinical need to develop improved treatment strategies for these women since the median survival of patients with metastatic TNBC …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Health
School
School of Biomedical Sciences

Investigating the role of Neuropilin-1 in Triple-Negative Breast Cancer metastasis and chemoresistance

Triple-negative breast cancers (TNBC) are negative for Estrogen Receptor, Progesterone Receptor and HER2 expression, are clinically aggressive and are unresponsive to the available hormonal or targeted drugs used for other breast cancer subtypes, so that TNBC patients rely mainly on chemotherapy. TNBC accounts for 15-20% of all invasive breast cancer and patients have increased risk of recurrence, mortality and early metastatic progression. Thus, there is an urgent clinical need to develop improved treatment strategies for TNBC. Neuropilin-1 (NRP1) is a …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

A novel molecular targeted therapy for anaplastic prostate cancer

In advanced PCa, where the cancer has spread into the bone and other organs, the emergence of treatment resistance remains inevitable. For decades the primary form of treatment in advanced PCa has been to target the production and actions of male sex hormones, androgens, the primary developmental and survival factor of prostate tissue. While these therapies result in tumour regression and cancer control, this is temporary and treatment resistance occurs, referred to as castrate resistant prostate cancer (CRPC). In the …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

PSA splice variant in prostate cancer diagnosis and pathogenesis

Current clinical prostate cancer screening is heavily reliant on measuring serum prostate specific antigen (PSA) levels. However, two-thirds of these men will not have cancer on biopsy and conversely, other prostate diseases. As a result, for ~75% of patients the large number of indolent tumours diagnosed has led to significant overtreatment creating an urgent need for appropriate prognostic assays that can distinguish indolent, slow growing tumours from the more aggressive and lethal phenotypes. PSA/KLK3 is a member of the tissue-kallikrein …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Development of bioengineered 3D tumour models for preclinical breast cancer research

3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Development of peptides as therapeutics to treat drug-resistant metastatic melanoma

Melanoma is a very aggressive cancer due to its metastatic potential, and the third most common in Australia. Many patients with metastatic melanoma have strong side effects, do not respond, or develop resistance to current therapies, which results in low survival rate (26% in 5-years). This project aims at developing a new class of therapeutic leads to tackle drug-resistance in metastatic melanoma.Currently, the preferred first-line regimen given to patients with metastatic melanoma is immunotherapy with antibodies (i.e. ipilimumab and nivolumab), …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.