Filter by faculty:

Found 4 matching student topics

Displaying 1–4 of 4 results

Development of methods to analyse cells in 3D bioengineered human tumour models

Over the past few decades, cancer mortality has risen more than 2.6-folds in Australia, mandating novel research to study and understand the mechanisms of cancer biology. Recent advancements in technology have led to development of novel scaffold-based, bioengineered 3D tumour models that recapitulate the complex, in vivo cancer microenvironment better than the conventional 2D monolayer cultures.Specifically, tumour cells encapsulated in hydrogel systems are widely used as effective 3D tumour models because of how closely they mimic the native tissue extracellular …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Development of bioengineered 3D tumour models for preclinical breast cancer research

3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Engineering the prostate tumour microenvironment in organ-on-a-chip systems

Prostate cancer remains one of the leading causes of global death. The tumour microenvironment (TME) including blood vessels, immune cells, fibroblasts, and the extracellular matrix (ECM) possesses disease-specific biophysical and biological factors that are difficult to recapitulate using conventional in vitro cell culture models.The absence of these factors, however, causes cells to display abnormal morphologies, polarisation, proliferation, and drug responses, thereby limiting the ability to translate research findings from traditional cell culture into clinical practice.Recent advances in organ-on-a-chip technology enable …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Understanding the structure-property relationships in reduced graphene oxide hydrogels

Graphene consists of hybridised carbon atoms in a hexagonal two-dimensional (2D) lattice. This material has extraordinary mechanical, thermal and electrical properties. However, one problem in practical applications is the aggregation and restacking between neighbouring graphene layers.In contrast, a possible way to avoid this problem is by transforming 2D graphene sheets into graphene hydrogel (GH) consisting of a three dimensional (3D) porous structure. Recently, 3D GH has been widely investigated in energy storage and conversion, catalysis and sensors. Furthermore, its accessible …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Page 1 of 1