QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 6 matching student topics

Displaying 1–6 of 6 results

Development of a microfluidic sample processing integrated robot (micro SPIN-R)

Microfluidic devices are increasingly relied upon to address the complexity of in-vitro disease models that are intended to mimic and provide insight into in-vivo processes and reactions to novel therapies and in turn, can become powerful companion diagnostic devices essential for predicting and individual patient’s reaction to a particular treatment. However, as these microfluidic devices become more and more prominent and necessary for addressing the drug screening and disease modeling needs of the industry, we have observed a lack in …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Engineering the prostate tumour microenvironment in organ-on-a-chip systems

Prostate cancer remains one of the leading causes of global death. The tumour microenvironment (TME) including blood vessels, immune cells, fibroblasts, and the extracellular matrix (ECM) possesses disease-specific biophysical and biological factors that are difficult to recapitulate using conventional in vitro cell culture models.The absence of these factors, however, causes cells to display abnormal morphologies, polarisation, proliferation, and drug responses, thereby limiting the ability to translate research findings from traditional cell culture into clinical practice.Recent advances in organ-on-a-chip technology enable …

Study level
Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Microfluidic chip-based tumor-immune cancer models for biomarker discovery

In-vitro profiling of tumour-immune cell interactions in proximity can provide valuable insight into patient response to new combinatorial immunotherapies that are in the pipeline and currently being tested in clinical trials. These in-vitro models allow for a more controlled and isolated environment and provide a methodical approach for generating quantifiable data characterizing the interactions between target and effector cells. Traditionally executed in well-plates, tumour-immune models have been slowly moving towards a microfluidic chip-based approach for several reasons: better control over …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Development of a Microfluidic Gut-Brain Axis Chip

The gut microbiome refers to the collection of micro-organisms that are living symbiotically in the human or animal gastrointestinal tract (defined as the “microbiota”), their genetic material as well as the surrounding environmental habitat. It is now appreciated that the microbiome plays an important role in human health and diseases. Many neurodegenerative diseases, such as Parkinson's Disease have been linked to dysregulation of the gut microbiota. However, it is difficult to study gut-brain axis using animal models due to inter-species …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Microbiome Research

An airway chip for screening viral infection mediated immune responses

Respiratory infections such as influenza, SARS-COV-2, , and MERS are increasingly prevalent. Complications and related deaths arising from these infections are often the result of a “cytokine storm”, whereby there is an over production of proinflammatory soluble factors by immune cells, which dictates symptoms severity and mortality risk [1]. Recent works showed that immunomodulatory therapy with or without antiviral agents may improve recovery outcome. However, the screening of suitable immune-modulatory and antiviral agents relies heavily on animal models which cannot …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences

Develop microfluidic technologies for cardiovascular and cerebrovascular diseases

The sudden rupture of vulnerable atherosclerotic plaques and subsequent thrombosis formations are responsible for most acute vascular syndromes, such as myocardial infarction and stroke. Many victims who are apparently healthy die suddenly with no prior symptoms. Such deaths could be prevented through surgery or alternative medical therapy, if vulnerable plaques were identified earlier in their natural progression.To address this pressing need, we're developing simple-to-use, high-throughput and highly-informative microfluidic biochips to understand the sequences of molecular events underlying biomechanical thrombosis (mechanobiology). …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.