QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 36 matching student topics

Displaying 25–36 of 36 results

Computational methods for multi-scale structural optimisation

Structural optimisation is a powerful computational methodology for finding high-performing designs for structural components or material architectures. For example, what periodic scaffold would provide the highest possible stiffness for its weight?Solving such a problem computationally requires an understanding of the relevant equations required to model the physical properties of interest, as well as efficient implementation of a range of numerical methods including finite elements, finite differences and optimisation.With recent developments in 3D printing technologies it is now becoming possible to …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Mathematical Sciences

Design material library digital twin

A material library digital twin is a virtual representation of the physical material library we are building in the School of Design soft labs. It contains a comprehensive collection of materials used in various industries. Its purpose is to provide a digital platform that facilitates efficient and effective material selection, exploration, and analysis through integrated search and filtering functionalities, and provides connections to local suppliers and manufacturers.By providing comprehensive information about each material, including its composition, mechanical and thermal properties …

Study level
Vacation research experience scheme
Faculty
Faculty of Creative Industries, Education and Social Justice
School
School of Design

Glassy 2D molecular materials

Modern semiconductor technologies are based on crystalline materials with well-defined physical and electronic structures.However, molecular materials, such as organic semiconductors, may present interesting opportunities through disordered structures.The focus of this project will be on conjugated 2D materials without long-range order: molecular glasses. Through control of the chemical composition, atomic bonding motifs, and lateral size, we will be able to modify the properties of these materials.Our focus will be on synthesising and studying these new materials to better understand the relationship …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Experimental testing of particleboard

Would you like to put your engineering knowledge to use and make a real impact with sustainable construction materials?Particleboard, a common flooring material used in domestic housing, is the focus of ongoing research at QUT in collaboration with the Engineered Wood Products Association of Australasia (EWPAA). Over the past few years, we have been at the forefront of characterising the shear performance of this sustainable material.

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering

High energy absorbing materials and composites for building protection from collision damage

Protection of structures has become a priority for saving lives and preventing structural collapses caused by increased natural or man-made disasters. Most injuries and mortalities in these disasters are caused due to fragmentation of structures, and therefore, structural protection through systems that can absorb more energy and effectively contain the fragments (debris) are needed. Additive manufacturing (such as 3D printing) can be used to develop special geometries called auxetic geometries and composites using sustainable bioplastics which can absorb shock energy …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering
Research centre(s)
Centre for Materials Science

Macromolecular barcoding for tracing plastic materials for the circular economy: a game changer for recycling

The reduction and management of plastic waste is perhaps the most critical challenge facing modern economies and plastic pollution cannot be resolved by generic approaches to research or to problem-solving. The Soft Matter Materials Team aims to resolve the anonymity and ubiquity of plastics by pioneering a simple optical readout system that can identify the uniquely coded information in macromolecules that have been embedded in plastics.In this project, optically readable macromolecular barcodes based on a system of excimer fluorescence switch-on …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Australian Ganoderma species for the production of bioactive metabolites and new functional materials synthesis

Fungi are essential components of all ecosystems in roles including symbiotic partners, decomposers and nutrient cyclers and as a source of food for vertebrates and invertebrates. While vital to soil health and organic matter turnover, fungi have great potential in sustainable design and medicine.Ganoderma strains in particular produce bioactive compounds and display growth characteristics that favour their use in medical and applied biotechnology. Some species produce triterpenoids, such as ganoderic acids, and have been used in traditional Asian medicine for …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Biology and Environmental Science
Research centre(s)
Centre for Agriculture and the Bioeconomy

Designing future magnetic materials

Low-dimensional and atomically-thin magnets host a myriad of exotic magnetic states. As such, they are excellent candidates for memory and logic devices in future technologies.However, the atomic structures needed to realise these states are still not well understood.For this reason, theoretical investigations of the electronic and magnetic properties of these materials are crucial to engineer functional magnetic materials in the future.

Study level
Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

Phosphate-based polyanionic cathode materials for (post) Li-ion batteries

Mixed polyanionic compounds have been studied extensively as viable cathode materials for sodium-ion batteries. Mixed phosphates Na4M3(PO4)2P2O7 (M = Mn2+, Fe2+, Co2+, Ni2+), provide a low barrier for Na-ion diffusion, being advantageous in comparison to phosphates and pyrophosphates. Despite being structurally similar, electrochemical performance differs for their analogues with different degrees of (de)sodiation, according to the transition element present. This project will develop series of mixed phosphates using novel rapid heating methods to achieve desired electrochemical properties.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

‘race for the surface’: designing the next generation antimicrobial biomaterials

When a biomaterial is implanted into the body and bacteria get into the implantation site, both the bacteria and tissue cells actively seek to establish their colonization on the biomaterial surface. This process, called ‘the race for the surface’ by Anthony Gristina in 1987, is still a subject of intense investigation. It is generally accepted that a biomaterial’s success in integrating with the body depends on if tissue cells win or the bacteria win the race. However, evidence from the …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Business and Law
School
School of Accountancy

CFD modelling of the deformation of porous material during drying

Drying is one of the major processes in the food industry and is a dominant food preservation method. However, current food drying systems are highly energy-intensive lengthy processes and result in significant food quality deterioration. The application of intermittent microwave in conventicle drying (IMCD) can significantly increase the drying rate and drastically reduce the drying time However, significant research is still required to control the nonuniform heating of MW and reducing quality degradation during IMCD.To enhance the performance of IMCD, …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Agriculture and the Bioeconomy

Experimental investigation of the repeatability of the chemical etching techniques applied for nanotexturing material surfaces

Exposure to contagious pathogens, therefore, infections in public places, including healthcare facilities, is a global concern nowadays. Nanoscale roughness on the materials - as that of the cicada and dragonfly wings - exhibited strongly antimicrobial properties that repel and/or kill bacteria.The nano-texture is usually produced by applying wet-chemical etching, electrochemical etching, and hydrothermal process. The process control parameters usually include the etchant’s molar weight, etching period, and temperature (for hydrothermal only).Considering one-factor-at-a-time, these control parameters are approximated for a nanotextured …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Page 3 of 3

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.