Filter by faculty:

Found 4 matching student topics

Displaying 1–4 of 4 results

Mathematical modelling of the mechanobiology during plaque growth

Plaque growth is a chronic inflammatory response induced by the interactions between vascular endothelial cells, lipids, monocytes/macrophages, vascular smooth muscle cells and platelets in the arteries. The mechanism involves interactions between the activities of cellular and acellular components in plaque microenvironment. Experimental studies have revealed the contributing roles of many different biological factors and processes, such as:lipid depositioninflammationangiogenesishaemorrhage.Due to the difficulties in experimental measurement and visualisation of the multiscale process, and the complex nature of the local environment, these complex …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Develop point-of-care microfluidic technologies for cardiovascular and cerebrovascular diseases

Excessive clotting (thrombosis) leads to the cardiovascular diseases such as heart attack and stroke, killing one Australian every 12 minutes. It has long been recognized that platelets play a central role in thrombosis and are unique in their ability to form stable adhesive interactions under conditions of rapid blood flow.We've recently discovered a new ‘biomechanical’ prothrombotic mechanism that highlights the remarkable platelet sensitivity to the shear stress gradients of blood flow disturbance. Importantly, we've found that current anti-thrombotic drugs, such …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Patient-specific assessment of atherosclerotic plaque vulnerability: Towards a computational tool for early detection and prediction

Plaque characteristics and local haemodynamic/mechanical forces keep changing during plaque progression and rupture.Quantifying these changes and discovering the progression-stress correlation can improve our understanding of plaque progression/rupture. This will lead to a quantitative assessment tool for early detection of vulnerable plaques and prediction of possible ruptures.Our research project aims to combine medical imaging, computational modelling, phantom experiments and pathological analysis to investigate plaque progression and vulnerability to rupture in both animal models and patients with carotid stenosis.We will identify and …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Intravascular optical coherence tomography imaging for vulnerable atheroma detection

The sudden rupture of vulnerable atherosclerotic plaques and subsequent thrombosis formations are responsible for most acute vascular syndromes, such as myocardial infarction and stroke. Many victims who are apparently healthy die suddenly with no prior symptoms.Such deaths could be prevented through surgery or alternative medical therapy, if vulnerable plaques were identified earlier in their natural progression.While intravascular methods have been developed to visualize various features of vulnerable plaques, there is no single technique that can accurately predict plaque rupture in …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Page 1 of 1