Filter by faculty:

Found 15 matching student topics

Displaying 13–15 of 15 results

Illuminating the microbial world using genome-based fluorescence microscopy

Our understanding of microbial diversity on earth has been fundamentally changed by metagenomic characterisation of natural ecosystems. Traditional approaches for visualising microbial communities are time-consuming and provide limited information about the identity of specific microorganisms.The proposed research aims to combine single cell genomics and super resolution microscopy for novel, high-throughput, genome-based techniques to visualise microorganisms, plasmids and viruses, with strain level specificity.The application of these highly scalable approaches will provide comprehensive and unprecedented insight into the fine-scale dynamics and evolution …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Robotic intention visualisation

Complex manufacturing environments characterised by high value and high product mix manufacturing processes pose challenges to Human-Robot Collaboration (HRC). Allowing people to see what robots are ‘thinking’ will allow workers to efficiently collaborate with co-located robotic partners. A tighter integration of work routines requires improved approaches to support awareness in human-robotic co-working spaces. There is a need for solutions that also let people see what the robot is intending to do so that they can also efficiently adjust their actions …

Study level
PhD
Faculty
Faculty of Creative Industries, Education and Social Justice
School
School of Design
Research centre(s)

Design Lab

Strain-level characterisation and visualisation of microbial communities associated with inflammatory bowel disease

Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder driven by complex interactions between environmental, microbial and immune-mediated factors. An unfavourable shift in gut microbiome composition, known as dysbiosis, is now considered a key feature of IBD, however it is unclear how specific microorganisms and their interactions with host cells contribute to disease onset and progression. Previous IBD studies have been largely limited to older sequencing methods with low resolution. Furthermore, these studies have predominantly focused on bacterial populations, …

Study level
PhD
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)

Centre for Microbiome Research

Page 2 of 2