Filter by faculty:

Found 2 matching student topics

Displaying 1–2 of 2 results

Mathematically optimising value of information for biodiversity management

When planning environmental management, data are only valuable if they lead to improved outcomes. As new monitoring technologies and approaches are developed, it is critical that they are used optimally to focus on the most important information gaps.Monitoring technologies should only be adopted if they can deliver improved management utility, and new data should be rapidly gathered in locations where early information could offer warning signals of future ecosystem change. Mathematical and statistical approaches to assessing the value of new …

Study level
Vacation research experience scheme
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Optimal conservation management in uncertain Antarctic environments

Species and ecosystems in Antarctica are threatened. Optimal biodiversity conservation is an interdisciplinary field combining mathematical modelling and optimisation with ecology and conservation. We can use mathematics to understand the system, model how management actions might impact it, and then optimise which actions should be used. For example, we can explore where protected areas should be placed, how species should be managed, or how tourist impacts should be reduced. However, the complexities of conservation in Antarctica necessitate the application of …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Mathematical Sciences
Research centre(s)
Centre for Data Science
Centre for the Environment

Page 1 of 1