QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 12 matching student topics

Displaying 1–12 of 12 results

A soft robotic manipulator for spinal surgery

The geriatric population in Australia (4.2 million 2020, ABS), is growing steadily with numbers expected to double in the coming years. Incidences of spinal disorders requiring surgical treatment are therefore predicted to increase, incurring an estimated lifetime cost of AUD 3.7 billion per case (The Treasury). Robotics, an increasingly important component of modern medicine, is well suited to address the minimally invasive surgical needs of treating the spine.This project proposes the use of a soft-robotic manipulator to carry out spinal …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics
Research centre(s)
Centre for Robotics

How do healthy people sleep? Biomechanics, physiology, and environment - what matters most?

In the Westernized world a person typically spends one third of their life in bed, with more time spent sleeping in a bed than in any other single activity. Sleep amount and quality of sleep have a direct impact on mood, behaviour, motor skills and overall quality of life. Yet, despite how important restful sleep is for the body to maintain good health, there is a comparatively small amount of studies evaluating key multi-factorial and biomechanical determinants of restful sleep …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Develop microfluidic technologies for cardiovascular and cerebrovascular diseases

The sudden rupture of vulnerable atherosclerotic plaques and subsequent thrombosis formations are responsible for most acute vascular syndromes, such as myocardial infarction and stroke. Many victims who are apparently healthy die suddenly with no prior symptoms. Such deaths could be prevented through surgery or alternative medical therapy, if vulnerable plaques were identified earlier in their natural progression.To address this pressing need, we're developing simple-to-use, high-throughput and highly-informative microfluidic biochips to understand the sequences of molecular events underlying biomechanical thrombosis (mechanobiology). …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

A new physics informed machine learning framework for structural optimisation design of the biomedical devices

The machine learning based computer modelling and simulation for engineering and science is a new era. The optimisation analysis is widely used in the design of structures.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Image-based computational model to predict intracranial aneurysm rupture

Intracranial aneurysms are bulging, weak areas of an artery that supply blood to the brain which are relatively common. While most aneurysms do not show symptoms, 1% spontaneously rupture which can be fatal or it can leave the survivor with permanent disabilities. This catastrophic outcome has motivated surgeons to operate on approximately 30% of aneurysms despite their rate of complications arising and cost of operation.The impact of aneurysm morphology on blood flow shear stress and rupture could educate surgical decision-making …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Development of bioengineered 3D tumour models for preclinical breast cancer research

3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

3D Bioprinting in Cancer Research

Interested in 3D Bioprinting? Care about improving our understanding of cancer pathogenesis? Then this opportunity is for you!   The Queensland University of Technology (QUT) and industry partner Gelomics Pty Ltd are seeking competitive candidates to apply for a PhD scholarship (AU $34,013 per annum) in 3D Bioprinting & Cancer Research. 

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

Understanding and manipulating bacterial motility for infection control

The recent COVID 19 pandemic reminds us of how difficult it is to control infectious diseases. Pathogenic microorganisms are known to be extremely 'smart' and are able to quickly develop mechanisms against most of our strategies aimed at eradicating them. Our group is focused on bacterial infections to implants and medical devices. We are in the pursuit to outsmart the bacteria to develop the next generation medical device and implant materials.Bacterial motility/movement and group-coordination on surfaces and in 3-dimensional environment …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Comparison of output from collocated solar systems of different technology

Solar panel efficiency is calculated using standardised testing conditions, allowing like-for-like comparison of systems under the same conditions. However, data collected over a three year period from two collocated solar systems of different technologies are showing unexpected results. The most efficient system's yearly output is comparatively lower. Initial data analysis explains some differences from the operational conditions, but further investigation is required.

Study level
Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Centre for Clean Energy Technologies and Practices

Understanding the structure-property relationships in reduced graphene oxide hydrogels

Graphene consists of hybridised carbon atoms in a hexagonal two-dimensional (2D) lattice. This material has extraordinary mechanical, thermal and electrical properties. However, one problem in practical applications is the aggregation and restacking between neighbouring graphene layers.In contrast, a possible way to avoid this problem is by transforming 2D graphene sheets into graphene hydrogel (GH) consisting of a three dimensional (3D) porous structure. Recently, 3D GH has been widely investigated in energy storage and conversion, catalysis and sensors. Furthermore, its accessible …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Control of concentrating solar thermal power plants

Concentrating solar power (CSP) is a technology that utilises mirrors (heliostats) to focus the sun’s rays on a solar receiver. This provides heat for a power generation cycle, creating thermal energy.Control of the heat transfer fluid temperature in the solar receiver is crucial for the efficient use/storage of thermal energy and to minimise the degradation of the receiver. The aim of this project is to design controllers for the heat transfer fluid pumps and the heliostats using a previously developed model of the receiver's thermodynamics.

Study level
Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

An airway chip for screening viral infection mediated immune responses

Respiratory infections such as influenza, SARS-COV-2, COVID-19, and MERS are increasingly prevalent. Complications and related deaths arising from these infections are often the result of a “cytokine storm”, whereby there is an over production of proinflammatory soluble factors by immune cells, which dictates symptoms severity and mortality risk. Recent works showed that immunomodulatory therapy, with or without antiviral agents, may improve recovery outcome. However, the screening of suitable immune-modulatory and antiviral agents relies heavily on animal models which can't capture …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.