Filter by faculty:

Found 2 matching student topics

Displaying 1–2 of 2 results

Can we beat nature in designing catalysts? Towards synthetic protein-structures based on precision macromolecules

Are you up for a challenge?In this project, you'll explore if you can beat nature in making catalytic systems!Over billions of years, nature has perfected the design and synthesis of high molecular weight precision macromolecules, which are able to execute a specific function in a complex biological environment, such as proteins.The project will be embedded into a large research effort within the Soft Matter Materials Team aimed at using precision synthetic polymer chemistry to design macromolecules that can be folded …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Improving mechanical properties of hydrogels for tissue engineering

Hydrogels provide a hydrated, extracellular, matrix-like environment that allow for the culturing and study of cells. However, hydrogels are typically soft and fragile, which limits their potential for load-bearing applications such as cartilage tissue engineering.This project aims to improve the mechanical properties of hydrogels for tissue engineering using a range of experimental and theoretical approaches.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Page 1 of 1