Filter by faculty:

Found 3 matching student topics

Displaying 1–3 of 3 results

Using a natural β-carboline dimer compound to target metabolic vulnerabilities linked to glycolysis in prostate cancer

Prostate cancer is an androgen dependent cancer and treatments are aimed at preventing activation of the androgen receptor. Part of the development of resistance to therapies involves prostate cancers reprogramming their metabolism to overcome metabolic stress induced by these therapies and support growth and survival. This reprogramming involves increases in the rate of glycolysis and intermediate pathways branching from glycolysis. Previously in our laboratory, the natural compound, beta-carboline dimer, BD, was identified to have potent effects on cell viability, cell …

Study level
Master of Philosophy, Honours
Faculty
1043076
School
School of Biomedical Sciences

Improving platinum-based chemotherapy by targeting drug metabolism in lung cancer

Lung cancer is the deadliest cancer accounting for 18.4% of all cancer-related deaths. Platinum-based chemotherapy remains a key treatment option for most people living with this disease, either as adjuvant therapy or in combination with immunotherapy. However, resistance to therapy is a significant issue in the treatment of lung cancer. Novel therapeutic strategies combined with predictive biomarkers chemotherapy response are needed to transform the clinical management of NSCLC.Our published work has identified novel biomarkers and druggable proteins from deregulated protein …

Study level
Master of Philosophy, Honours
Faculty
1043076
School
School of Biomedical Sciences
Research centre(s)
Centre for Genomics and Personalised Health

Therapeutic opportunities targeting epigenetic-metabolism crosswalks in cancer

Epigenetic and metabolic pathways in cancer cells are highly interconnected. Epigenetic landscape in cancer cells is modified by oncogene-driven metabolic changes. Metabolites modulate the activities of epigenetic modifying enzymes to regulate the expression of specific genes. Conversely, epigenetic deregulation that occurs in cancer affect the expression of metabolic genes, thereby altering the metabolome. These changes all coordinately enhance cancer cell proliferation, metastasis and therapy resistance.The overall aim of the project is to understand the link between the activity of epigenetic …

Study level
Master of Philosophy, Honours
Faculty
1043076
School
School of Biomedical Sciences

Page 1 of 1