Filter by faculty:

Found 11 matching student topics

Displaying 1–11 of 11 results

In-silico clinical trials to assess implant performance after shoulder joint replacement

The challenge of conducting a clinical trial to test the performance of joint replacement prosthetics in-vivo results in an expensive and risky lead time for the development of new implant designs. Computational methods have the potential to significantly improve the workflow of implant design via in-silico clinical trials.Anatomical variation in bone morphology across populations also presents a challenge, and new prosthetics will need to be offered in a variety of shapes and sizes to maximise their suitability for a diverse …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Histological analysis of explanted pelvic meshes

Pelvic mesh implantation is a common surgical procedure employed to treat stress urinary incontinence, rectal prolapse and pelvic organ prolapse. Data from the Therapeutic Goods Administration (TGA) showed that 151,000 meshes have been implanted in Australia since 1998 and 3.7 million world-wide between 2005 and 2013. However, the use of pelvic meshes can cause complications such as erosion, infection, pain and discomfort, which sometimes require further surgery. With high complication rates the FDA recently issued 2 warnings against the use …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

3D Printing Surgical Education and Training Models

Each year, millions of people suffer from traumatic tissue damage due to cancers, congenital defects or injury. Biofabrication is the rapid 3D printing of replacement tissue and organs that are customised to the specific needs of the patient. This future of manufacturing technology is set to revolutionise regenerative medicine and deliver high quality health outcomes. The Biofabrication and Tissue Morphology group is a world class multi-disciplinary research team focused on embedding biofabrication into routine clinical use. Based at our state-of-the-art …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Characterising fatigue of 3D printed metamaterials

Each year, millions of people suffer from traumatic tissue damage due to cancers, congenital defects or injury. Biofabrication is the rapid 3D printing of replacement tissue and organs that are customised to the specific needs of the patient. This future of manufacturing technology is set to revolutionise regenerative medicine and deliver high quality health outcomes. The Biofabrication and Tissue Morphology group is a world class multi-disciplinary research team focused on embedding biofabrication into routine clinical use.Based at our state-of-the-art labs …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Melt electrowriting microfibre scaffolds for biofabrication

Each year, millions of people suffer from traumatic tissue damage due to cancers, congenital defects or injury. Biofabrication is the rapid 3D printing of replacement tissue and organs that are customised to the specific needs of the patient. This future of manufacturing technology is set to revolutionise regenerative medicine and deliver high quality health outcomes. The Biofabrication and Tissue Morphology group is a world class multi-disciplinary research team focused on embedding biofabrication into routine clinical use.Based at our state-of-the-art labs …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

A new physics informed machine learning framework for structural optimisation design of the biomedical devices

The machine learning based computer modelling and simulation for engineering and science is a new era. The optimisation analysis is widely used in the design of structures.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Medical 3D scanning technologies for microtia patients

Each year, millions of people suffer from traumatic tissue damage due to cancers, congenital defects or injury. Biofabrication is the rapid 3D printing of replacement tissue and organs that are customised to the specific needs of the patient. This future of manufacturing technology is set to revolutionise regenerative medicine and deliver high quality health outcomes. The Biofabrication and Tissue Morphology group is a world class multi-disciplinary research team focused on embedding biofabrication into routine clinical use.Based at our state-of-the-art labs …

Study level
Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Image-based computational model to predict intracranial aneurysm rupture

Intracranial aneurysms are bulging, weak areas of an artery that supply blood to the brain which are relatively common. While most aneurysms do not show symptoms, 1% spontaneously rupture which can be fatal or it can leave the survivor with permanent disabilities. This catastrophic outcome has motivated surgeons to operate on approximately 30% of aneurysms despite their rate of complications arising and cost of operation.The impact of aneurysm morphology on blood flow shear stress and rupture could educate surgical decision-making …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Optical coherence tomography imaging of arterial tissue

The sudden rupture of vulnerable atherosclerotic plaques and subsequent thrombosis formations are responsible for most acute vascular syndromes, such as myocardial infarction and stroke. Many victims who are apparently healthy die suddenly with no prior symptoms. Such deaths could be prevented through surgery or alternative medical therapy, if vulnerable plaques were identified earlier in their natural progression. While intravascular methods have been developed to visualize various features of vulnerable plaques, there is no single technique that can accurately predict plaque …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Develop point-of-care microfluidic technologies for cardiovascular and cerebrovascular diseases

Excessive clotting (thrombosis) leads to the cardiovascular diseases such as heart attack and stroke, killing one Australian every 12 minutes. It has long been recognized that platelets play a central role in thrombosis and are unique in their ability to form stable adhesive interactions under conditions of rapid blood flow. We've recently discovered a new ‘biomechanical’ prothrombotic mechanism that highlights the remarkable platelet sensitivity to the shear stress gradients of blood flow disturbance. Importantly, we've found that current anti-thrombotic drugs, …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Development of bioengineered 3D tumour models for preclinical breast cancer research

3D organoid model technologies have led to the development of innovative tools for precision medicine in cancer treatment. Yet, the lack of resemblance to native tumours, and the limited ability to test drugs in a high-throughput mode, has limited translation to practice.This project will progress organoid models by using advanced tissue engineering technologies and high-throughput 3D bioprinting to recreate 'mini-tumours-in-a-dish' from a patient’s own tumour cells, and study the effects of various components of the tumour microenvironment on drug response.In …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Health
School
School of Biomedical Sciences
Research centre(s)
Centre for Biomedical Technologies

Page 1 of 1