Filter by faculty:

Found 3 matching student topics

Displaying 1–3 of 3 results

Bio-inspired design to create strong and toughness composites

A fundamental challenge when designing materials for mechanical use is to attain both strength and toughness in one body. Conventional metallic materials generally have relatively large plasticity due to having a massive population of microstructural defects and effective plastic deformation mechanism. This has been exploited for fabricating tolerant (toughness) materials for structural applications. However, these structural defects render the materials relatively low strength and a low load-bearing capability. In contrast, ceramics and intermetallic compounds have higher strengths, owing to their …

Study level
PhD, Master of Philosophy, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)

Advanced materials for supercapacitors

Energy storage devices, such as supercapacitors, play an increasingly important role in our daily life as a reliable energy supplier. Supercapacitors are a type of energy storage system that possess merits of rapid energy storage and release (high power density) with a cycling lifetime of ten thousand or more. Nevertheless the energy density of conventional electrochemical capacitor is quite low.This project aims to enhance the energy density of supercapacitor by designing and synthesising nanostructured materials using transition metals.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Advanced materials for perovskite solar cells

Solar cells using metal halides perovskite materials to absorb light is one of the most important scientific discoveries. These cells have the potential to provide cost-effective solar electricity in the future. In the last decades, perovskite solar cells (PSCs) demonstrated unprecedented progress towards this goal. This technology holds the world record for energy conversion efficiency and is comparable to commercial crystalline silicon, but at a much lower cost.Currently their instability and use of toxic lead are key issues that restrict …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Page 1 of 1