QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 8 matching student topics

Displaying 1–8 of 8 results

Bio-inspired design to create strong and toughness composites

A fundamental challenge to materials design for mechanical capability is to attain both strength and toughness at the same time in one body. Conventional metallic materials generally have relatively large plasticity due to having massive population of microstructural defects and effective plastic deformation mechanism, which have long been exploited for fabricating flaw tolerant (toughness) materials for structural applications. By the same token theseStructural defects render the materials relatively low strength, thus low load-bearing capability. In contrast, ceramics and intermetallic compounds …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science

Supercapacitor with 2D vertical heterostructure electrodes

Supercapacitor is a promising energy storage device with advantages of high power density, fast charging/discharging rate and long cycling life. However, the energy density of supercapacitor is relatively low as compared to that of other devices such as lithium-ion battery. To improve the energy density, new electrode materials including graphene and metal oxides have been explored for supercapacitor electrodes.Two-dimensional (2D) heterostructures recently offered a compelling solution to enhance the performance of supercapacitors by combining more than one components into a …

Study level
PhD
School
School of Mechanical, Medical and Process Engineering

Understanding the structure-property relationships in reduced graphene oxide hydrogels

Graphene consists of hybridised carbon atoms in a hexagonal two-dimensional (2D) lattice. This material has extraordinary mechanical, thermal and electrical properties. However, one problem in practical applications is the aggregation and restacking between neighbouring graphene layers.In contrast, a possible way to avoid this problem is by transforming 2D graphene sheets into graphene hydrogel (GH) consisting of a three dimensional (3D) porous structure. Recently, 3D GH has been widely investigated in energy storage and conversion, catalysis and sensors. Furthermore, its accessible …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

A new physics informed machine learning framework for structural optimisation design of the biomedical devices

The machine learning based computer modelling and simulation for engineering and science is a new era. The optimisation analysis is widely used in the design of structures.

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Engineering
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies
Centre for Biomedical Technologies

Structural application of green concrete

The need for sustainable construction has prompted researching alternative concrete technologies around the world. In QUT, a project has been developed to investigate structural applications of environmentally friendly (Green) concrete.Project activities can be undertaken by students at various levels, including VRES, final-year undergraduates, and PhD researchers.

Study level
PhD, Honours
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering
Research centre(s)
Centre for Materials Science
Centre for the Environment

Semantic SLAM for robotic scene understanding, geometric-semantic representations for infrastructure monitoring and maintenance

Making a robot understand what it sees is one of the most fascinating goals in our current research. To this end, we develop novel methods for Semantic Mapping and Semantic SLAM by combining object detection with simultaneous localisation and mapping (SLAM) techniques.We work on novel approaches to SLAM that create semantically meaningful maps by combining geometric and semantic information. Such semantically enriched maps will help robots understand our complex world and will ultimately increase the range and sophistication of interactions …

Study level
PhD
Faculty
Faculty of Engineering
School
School of Electrical Engineering and Robotics

Epitaxial growth of 2D heterostructures for two dimensional electronics

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Synergic identification of prestress force, moving force and interfacial force for corroborative substructural modelling

We are looking for an appropriate PhD candidate working for a recently awarded ARC Discovery Project. The PhD candidate will work on the further improvement of the previously developed Synergic identification of prestress force [1] and moving force applying to continuous supported prestressed concrete bridges using regularisation techniques [2-7] and corroborative substructural modelling.

Study level
PhD
Faculty
Faculty of Engineering
School
School of Civil and Environmental Engineering

Page 1 of 1

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.