Filter by faculty:

Found 4 matching student topics

Displaying 1–4 of 4 results

Materials discovery and design from quantum mechanics-based computational approaches

Understanding novel physics in nanoscale materials is critical for the development of modern electronics technology.However, such delicate materials are difficult to manipulate and characterize experimentally because of their tiny size. This raises the conundrum of how to proceed forward quickly with exploration and subsequently design of properties.In principle, materials properties are determined by the electronic structure. Quantum mechanics based computational approaches are able to address fundamental electronic, optical and magnetic properties in such materials.This provides a powerful complement to the …

Study level
PhD, Master of Philosophy, Honours
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Improving mechanical properties of hydrogels for tissue engineering

Hydrogels provide a hydrated, extracellular, matrix-like environment that allow for the culturing and study of cells. However, hydrogels are typically soft and fragile, which limits their potential for load-bearing applications such as cartilage tissue engineering.This project aims to improve the mechanical properties of hydrogels for tissue engineering using a range of experimental and theoretical approaches.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Mechanical, Medical and Process Engineering
Research centre(s)
Centre for Biomedical Technologies

Investigating the mechanical properties of temperate, subtropical, and tropical fodder

There is strong, qualitative evidence that fodder crops produced in the tropics are 'tougher' and less nutritious than fodder crops produced in subtropical and temperate regions.However, tools that can quantify the mechanical properties of fodder crops, particularly those with direct relevance to feeding and nutrition, are lacking.

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Biology and Environmental Science
Research centre(s)

Controlling soft matter materials at the nano-level – how to construct materials whose mechanical properties can be remotely adjusted

Nature is an expert at developing high-performance materials which combine properties like high toughness, stiffness, and low weight.Some well-known examples include:woodbonespider silk.In this project we aim to mimic the structure and properties of another, less known natural high-performance material: nacre.Additionally, we want to introduce a light-adaptive control mechanism. This will enable a controlled transformation of physical and mechanical properties in real-time.To achieve adaptable properties, a control mechanism on the molecular level is required, featuring several distinct functional plateaus.It is proposed …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Page 1 of 1