Filter by faculty:

Found 2 matching student topics

Displaying 1–2 of 2 results

Super metal organic framework-mineral composite material for hydrogen energy storage

Metal-organic frameworks (MOFs) are an emerging class of crystalline materials that hold huge promise for significant applications such as adsorption, separation, catalysis and drug delivery. Attributed to their exceptional porosity and surface area, the adsorptive performance of MOF materials has high potential for solving challenging issues such as hydrogen storage, greenhouse gas capture and water vapour harvest in arid regions.However, the practical application of many MOF materials encounters challenges from poor chemical stabilities, low yields and expensive manufacturing costs. With …

Study level
PhD, Master of Philosophy
Faculty
Science and Engineering Faculty
School
School of Earth and Atmospheric Sciences
Research centre(s)

Centre for Clean Energy Technologies and Practices

Metal polymer batteries and supercapacitors for renewable energy storage

Australia boasts rich wind and solar energy resources. To avoid fluctuations placing severe burden on the power grids, a reliable and efficient battery storage is required.The present technology based on lithium-ion batteries suffers from high manufacturing costs, poor safety and short life-span. Metal-polymer batteries are expected to overcome the storage and the charging speed of the traditional batteries in the near future, opening new avenues for renewable energy resources …

Study level
PhD, Master of Philosophy, Honours, Vacation research experience scheme
Faculty
Science and Engineering Faculty
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Page 1 of 1