QUT offers a diverse range of student topics for Honours, Masters and PhD study. Search to find a topic that interests you or propose your own research topic to a prospective QUT supervisor. You may also ask a prospective supervisor to help you identify or refine a research topic.

Filter by faculty:

Found 16 matching student topics

Displaying 13–16 of 16 results

Surface engineering for nanoelectronic devices

Ga2O3 is an emerging wide-bandgap semiconducting material that has received enormous attention in recent years. This is due to its potential application in power devices, UV detectors and military applications that are unattainable by conventional semiconductors such as silicon.The operation and performance of these type of electronic devices rely critically on the surface quality and properties of the semiconducting materials. However, the surface atomic structures and electronic structures of Ga2O3 single crystals are not yet fully understood.The principal aim of …

Study level
PhD, Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science
Centre for Clean Energy Technologies and Practices

Maxwell's Demon revisited: Molecular simulations as a statistical physics learning tool

In his 1871 'Theory of Heat', James Clerk Maxwell introduced a fictitious being who can violate the second law of thermodynamics by following the trajectory of every molecule within a gas.The being, later dubbed 'Maxwell's Demon' by Lord Kelvin, would operate a small trapdoor in a partitioned container to allow hotter and colder molecules of the gas to pass to opposite sides of the container. The Demon would be able to raise the temperature of the gas in one half …

Study level
Master of Philosophy, Honours
Faculty
Faculty of Science
School
School of Chemistry and Physics

Glassy 2D molecular materials

Modern semiconductor technologies are based on crystalline materials with well-defined physical and electronic structures.However, molecular materials, such as organic semiconductors, may present interesting opportunities through disordered structures.The focus of this project will be on conjugated 2D materials without long-range order: molecular glasses. Through control of the chemical composition, atomic bonding motifs, and lateral size, we will be able to modify the properties of these materials.Our focus will be on synthesising and studying these new materials to better understand the relationship …

Study level
PhD, Master of Philosophy
Faculty
Faculty of Science
School
School of Chemistry and Physics
Research centre(s)
Centre for Materials Science

Modelling of electrochemical CO2 capture and conversion

Renewable electricity is remarkably cheap, and is only going to get cheaper. However, existing state-of-the-art CO2 capture and conversion processes use thermal energy (typically generated by burning natural gas). This modelling project will investigate electrochemical techniques for capturing CO2 from air (direct air capture) and converting it to useful chemicals and materials.

Study level
PhD
School
School of Mechanical, Medical and Process Engineering

Page 2 of 2

Contact us

If you have questions about the best options for you, the application process, your research topic, finding a supervisor or anything else, get in touch with us today.